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1. INTRODUCTION

In [6, 7], Schoenberg developed an elegant theory of cardinal interpolation
by cardinal splines which was later extended to cardinal Hermite interpolation
by Lipow and Schoenberg [3] and by Lee et al. [2]. More recently Tzimbalario
[91 and Mohapatra and Sharma [4] have derived analogous resulis for certain
classes of cardinal discrete splines. In this paper we derive results for 2
broad class of generalized cardinal splines which both unify and generalize
the results of all the above papers. In particular we extend the results of
{91 to cardinal Hermite interpolation.

Let P, denote the space of all real-valued polynomials of degree not
exceeding n, and for 1 < s < n, let I' = (yq, vy 5eer Yu_s) denote a set of
linearly independent linear functionals on P,. We define (1) to be the
class of all functions S from R to itself such that for v = 0, +1, +2,..., 5]
[v,v + 1) = S, e P, and y[S,_{x + v)] = y[S,(x -+ )], Vye I

If vp) = p0), i =0,...,n — 5, then F,(I') is the class of cardinaj
splines with integer nodes of multiplicity s studied in [2, 31. If v,{p) = p"(0},
i =0,.,1n—s—1, and y,_[(p) = p*—=0), then &,(I") consists of the
cardinal g-splines studied by Lee and Sharma [1]. The cardinal discrete
splines of [4, 9] are obtained by putting s = 1, y,(p} = p(ih) and
ydpy =ph), i =0,1,..,n— 1 (0 < h < 1/n).

We note that our above definition of %,(I") is the analogy for cardinal po-
lynomial splines of Schumakers’ classes of generalized splines as defined in [8].

Now if @ = {p;,Pas...Psr is a basis for {pc P, v(p) =0, Vyel,
then it is easily seen that & (I") comprises all functions S of the form

SG) = PG+ ¥ et’pule — 1) + Z Pl — 24
k=1 k=1

et Y e+ Y Wpr + Do+, (LD
k=1 ko1
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100 GOODMAN AND LEE

where Pc P,, and

P, =p()  if x>0

=0 if x<0 (1.2)
px). =0 if x>0
= p(x) if x <O. (1.3)

We shall alternatively write %(I") as ().

Then £ = {x?—st, xn—=+2 _ x"} gives the cardinal splines of [2, 3]
and &P = {x"8%, x"s+2 x"—st3 . x"} gives the cardinal g-splines of [1],
while for the cardinal discrete splines of [9, 4] & comprises the single
polynomial x = x(x — I)(x — 2h) - (x — (m — Dh) and G, (x) =
x(x — nh)*7%, respectively.

Our main result involves the class of polynomials & = {p, xp,..., x*7'p},
where p is a polynomial of exact degree # — s - 1 whose zeros lie in the
intersection of the circles |z — z,| << |z,| and |z — Z, | < | £, |, where

jetTi(stD)

= el =)

29

and perhaps with zeros of multiplicity m at « and of multiplicity / at o — 1,
where « is a number in [0, 1). Suppose « is not a zero of the polynomial
I1,(p, xp, .., x*7'p: (—1)) in x defined in (2.4). Then our main result is

THEOREM 1. Given s bi-infinite sequences of data y® = (y) (p =
0, 1,..., s — 1) satisfying

YO =o0(v) (p=0,1,.,5—1) (1.4)
Jor some y > 0, there exists a unigue spline function S € (%) satisfying
S@ + 4) =37 (p=0,1,..,5— 1) Vinteger », (1.5}
such that

S(x) = O( x ). (1.6)

Our approach in solving the above interpolation problem is the same
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as in [2, 3]. In Section 2 we study the eigensplines and the zeros of the

polynomials {1, (% : A) as a polynomial in A, while a sketch of the proof
for Theorem 1 is given in Section 3.

2. EIGENSPLINES
Tet 0 << x < 1 and set

FHNP) = SL2(Ps s Paseens ) = {S € FUP): SO(v + )+) = 0
Vp =0, 1,..,5 — 1 and V integers v}. (2.1}

A function Se (%), S £ 0, i1s called an eigenspline if it satisfies the
functional relation :

S(x 4+ 1) = AS(x), Vx € R and for some A = 0. 2.2

The number A is called the eigenvalue of S.

Next we set out to determine the eigensplines in &,%(#). Let S be an
eigenspline in %,*(%#) with eigenvalue A, and let P be the polynomial com-
ponent of § in the interval [0, ). Then P®{(a) =0 for p =0, 1,...,5 — 1,
and we can write

Plx) = afx — «)f + a,4(x — a)s T @ — o)

From the relation S(x + 1) = AS(x), Vx € R, and (1.1) we have

P(x + 1) — AP(x) = Y ePpx).
k=1
Hence

PP+ 1) — APY0) = ¥ epP(@),  Vp =0, 1...n (23)
k=1

Let pulx) = @y + ara(x — @) + apo(x — ) 4+ + ay,(x — )", and writing
{2.3) in increasing p from O to n, we have a system of (n -~ 1) equations
in (7 -+ 1) unknowns @, @oyq seer p 5 €5, €5y €370

The matrix of the system is
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R L Y

YY) () e emm (D)

o) () e e=n (D)

173 e Y n
L (1) 2! (2) (s — D) (s — 1)
i 1a, 2! ay0 (s —Dla;,,
g g9 lag sy 2l a, 4, (s = DV ag ey
Cop 1tay 2 ay e (s — D ag,
st — A) 0 0

5! (S*S]) G+ DI — A

=1 DM —
(") (n— DI — X 0
y (7 o .
s (S) (n — 1) (n " 1) Al (1 — X)
st ay, (n— D0ay,, n!a.,
st As_1s (n _ 1)' s 30 nla, i,
slag, (n—Dla,,_, nlag,

Therefore, in order that P be nontrivial, the determinant
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Hn(@ : A) = Hn(Pl s P25y Ps b A)

R AR
) ) - () () e o
e Ny I o NG B R
| , | . ‘
! (T) (121) (s—ii 1) (g) (n— 1 ) (=4
G dy; ST ) s Arn-g din ||
a:zo a:21 a:22 a2:9—1 a'-zs az?‘l Q:Zn
}as.—m as‘—u 512 °7" Osge3  Osgs Tt lseane Ts_1n :I
I gy s s Tt g Ass Lsn—1 Zon |

must be zero.

Observe that if p(x) = x»5t% for k =1, 2,..., 5, then the polynomial
IT (% X) reduces to IT, («; A) of [2].

Now for s <r<xn-1,let I, (Z: =1, (p1,ps,.,0s: A) be the
determinant obtained from IT (2 : A) by deleting the first ( — 5) rows and
the last (r —s) columns. We shall put I1, {p;.ps,.,DP:: ) =0 for
r < saund r > n + 1. Following [3] we let 17, () denote the determinant
of the matrix obtained by deleting the first » rows and the last # columns
of |y — A8ij|l, i, =0,1,.,n We shall also write I, (#)=1T,,
{pl > P2 5e0s ps) = Hn,r(y : 0)

LemMMA 2.1. Let n, r, s be positive integers with n = r > s 2= 1. Then e
Sfollowing identities hold.

A, c(p A ()
=1l (p" NI, () — (0 — ¢ + DI, {p: D) IL,; (A (2.5)
I, A(p1s Paseees Pe i NI o i(Pay Paseees Psg 2 A)
= L1y (P s P2oees oot 2 D) Il i(Ds s Py e 52 )
— I, Dy Pases s NI Dy Poseens Psg @A) (2.6)
Hy Py s Do Ps i N I g poa( D1 5 Dot 2 )
= I (i ses P52 N L (P ey Psa 2 A)
——r+ I, pyss P : NI Ap1 ey Doy A 2.7
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Proof. The proof of the above identities involves the same method as
that used in [1], employing Karlin’s identity. [

LEMMA 2.2. Suppose p(x) = Yo a;x’. Then for 1 <r <n—+ 1,

an,?‘(p) =dp_py1 — (;) [7 - + (I' —|2_ 1) Ayri + -

Fer (T e =

Proof. The result is obtained by expanding the determinant representing
11, (p) along the last row. [}

LemMmA 2.3, For any polynomial p,

(=2 p () = % Mo 29

=0

Proof. Let p(x) = Yo a:x’. Then

(1 — x)"l)( al ) = i axi(l — xy

l — x far

- go g a(—1y~ ("~ 1) .

)

Interchanging the order of summation and applying Lemma 2.2, the result
(2.9) follows. |

LemmA 2.4. Ifn+ 1 = rand a, = 0, then

1T, (p) = 11, 1,;2(P) — 11,5, A(P) (2.10)
and
11, (xp) = I, .{p). (2.11)
Relations (2.10) and (2.11) follow from (2.9) if a, = 0. ||

Now for n+1=2r>=s>=1, let 4, p1,ps;..,Ps:A) denote the
determinant



GENERALIZED CARDINAL SPLINES 03

}Hn,r(pl : )\) Hn,r—l(pl : )\) Hn.r—s+1(pl . A)
]Hn,r(_PZ : A) H'n.7'~1§p2 : /\) Hn,;‘~s+}(p2 . ')‘)

!Hn,(p : A) Hn,r—lips : )\) Hﬂ-r'fs-k;.\{pe : /\‘>
LeMMa 2.5 Ifn+1=2r =5 =1, then

Hn,i‘(pl > P2 500 Ps : "1‘) Hn,r‘—l("\) Hn.r~2()0 Hn,’rf—s—}—l(/\‘)
= Arz.r(pl s P25 Pyt ’\) (212)

Proof. Qur vroof is by induction on 5. Clearly the identity (2.12) is
true for s = 1, and for all » > r. Suppose that it is true for 5 = k. By
Sylvester’s identity we have

A‘ﬂ,r(p]_ s P Prga : ’\) An,r—l(pz s P3oseees P : 3\)
- ﬁn,r‘l(pZ s D3 9eers Pyt /\) An.r(pl > P2 aeees Pt A}
- An.(p‘z > P03 5eees Prva : ’\) Aﬂ,i‘——l(pl s Pasees Pt /\) (213>

Hence from (2.6), (2.13), and the induction hypothesis, the assertion is
true for s = k — 1, and by induction it is true forall r > s > 1. §

Lemma 2.6, If p is a polvnomial of exact degree (n — s - 1}, then

Hn.r(ps XDyoers x8~lp)

Hn—s+1.rfs+1(p) ans+1,'l'~s(p) Hn—wl,r—-zw'z(p\}‘
Hn——s+1..3’~s+:2(p) Hn—s+1,.r—s+1(p) Hn—s‘—l.):'—z_:jua(p) (2}4}

] -iqn—.wrl..r( p) ans-,Ll.-rAl(p) o an—s»l,f‘—s‘*}([}}
Proof. The assertion follows from (2.12), using (2.11) and (2.10). §

Next we require a lemma on k-positive sequences.

LemMa 2.7. Let k be a positive integer and suppose the polynomiai
ag -+ a2+ -+ apz™ (a, > 0) has no roots in the sector |argr| <
kmi(k + 1). Let a; = O for i <0 and i > m. Then every minor of order <<k
of the matrix || a;_; || is strictly positive unless it contains a zero row or column.
Moreover the constant kw|(k + 1) is the best possible.

Proof. The result follows alimost immediately from the work of
Schoenberg [5]. The result is clearly true for m = 1. That it is true for
m = 2 when thz polynomial has complex roots follows from Theorem 3
in [5]. It then follows that the assertion is true for all m, since the class

of all k- positive sequences is closed with respect to the operation of con-
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volution of sequences. That the constant k7/(k + 1) is the best possible
follows by putting m = 2 in Theorem 1 of [5]. J

By a suitable translation we may assume without loss of generality that
a=0.

LeMMmA 2.8. If p has exact degree (n — s -+ 1), p(0) > 0, and all roots lie
in the intersection of the circles |z — zy| <l|zp| and |z —Zp| < |Zy |,
where

jein/(s+1)
%o = 2 sin(ais - 1))’
then

I, (p, Xp,..., X371p 1 ) = bAn—Bristl | ..o L g,

where a > 0 and sign b = (—1)\r+Dtntsid),

Proof. By Lemmas 2.3, 2.6, and 2.7, it follows that II, (p, xp,...,
xp) >0, Vr = 5,5+ 1,..., n - 1. Since

1T, (P, Xpseny x572p 2 X) = (= D)L, (D XPsecsy X7 1p) AN TRTHSHL
+ o+ 1L (P, XPs-.., X*7'p),

the result follows. |

THEOREM 2. Letn,r, s be positive integers such that s <r < i(n + s+ 1),
and suppose that p has exact degree (n — s -+ 1) and all its roots lie in the
intersection of the circles |z — z,| << |z, and | z — Z,| < |Z, |, where

jetm/(s+1)

% = Fsin(a)(s + 1)

Then for s =1, I1, (p: ) has (n — 2r + 2) distinct real zeros of sign
(—1)" interlacing with the zeros of I, () and of II,_, (p’ : }), and for
s > 1, I, Ap, xp,..., x> p : Xy has (n — 2r + s -+ 1) distinct real zeros of
sign (—1)" interlacing with the zeros of II, (xp, x*p,..., x*7p: Q) and of
IL, (P, (xp) s.... (x*'p) 1 ).

Proof. If n is even and r = i(n + 2), then II, (p:}) is a positive
constant. If » is odd and r = 4(n + 1), then I1, (p : A) = bA -+ a, where
a > 0 and sign b = (—1)"+, so that the zero of IT, (p : A) is of sign (—1)".
Now take &k < 4(n -~ 1) and suppose I1, (p : A) has distinct real zeros of
sign (—1)" for r > k + 1. We shall show that IT, ,(p: A) has distinct
real zeros of sign (—1)*. Evaluating (2.5) at the zeros of I, ;(A) and using
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the fact that I7, () and I7,_, ;(A) have interlacing zeros of sign (—1)%,
it follows that 71, .(p : A) has distinct real zeros of sign (—1)" interlacing
with the zeros of I1, (A). Then evaluating (2.5) at the zeros of 17, ,(p : &),
we see that 77, , (p’ : A) has distinct real zeros of sign (—1)* which interlace
with the zeros of 11, ;(p : A). Hence the result for s = 1 is proved by down-
ward induction on r.

Next, take p > 1 and suppose the assertion is true for s << p — 1. We
want to show that it is true for s = p. If (n + p) is odd, the result is true
for r = 4{n + p + D). If (n + s) is even, the result is true for r = ¥n — 5.

Now take & < i(n + p), and suppose 11, {p, xp,..., x*~*p : A} has distinct
real zeros of sign (—1)" for r > k 4+ 1. From (2.7,

KIT, il o XDy X7 2 NI,y o (Cep)'s (XPD) oo, (X772D) 2 )
=11, {p", (xpY e, 22p) 2 N) Iy 1(Xp, XPPsene, X770 )
- (H - F ‘%‘ P) H'n,k(pa XPse-s xp—lp : A) Hn-l,k((xp)’7 (xzp)ls‘”a (xo—lp)' : "\)

Evaluating this at the zeros of I, (xp, Xx°p,...., x°*"'p : A} and using the
induction hypothesis we see that I7, (p, xp,..., x*"'p : A} has real distinct
zeros of sign (—1)” which interlace with the zeros of I7,, . (xp, x*p...., x*"'p 1 A}
Then evaluating the same relation at the zeros of 17, {(p, xp,..., x*1p : A}, we
see that 77, , L', (xp),..., (x*"1p)’ : ) has distinct real zeros of sign {(—1}"
which interlace with the zeros of I, (p, xp,..., x*'p 1 A).

The result follows by induction. J

We next consider the possibility that the polynomial p has zeros at «
or x — 1. We again assume « = 0.

LEmMMa 2.9. If the polynomial p(x) = 3, o a;x has a zero at x = 0 of
mudtiplicity m, thenfor 1 <r <mr<$n+ D, r<n—m+ L,IL (p: 2
has degree (n — 2r - 1) and the coefficient of A%+ is (— 1YW [, (5,
where p(xy = p(x + 1).

Proof. By (2.9),

X

- A A n 3 — n [ 1 .
gbﬁn.'n——i—i(p) x=(1—x)p (1—_?) ={—x1"p iﬁ)
So

n—i

My = 1 Y 4 (" 7).

j=0

By expanding IT, {(p : A), we see that I7, (p: A) has degree (n — 2r = 1)
and the coefficient of A2+ ig Z;::ﬂ a;('=9). Since gy = - = a,; = 0,

the result follows. §



108 GOODMAN AND LEE

LemMA 2.10. Suppose the polynomial p(x) = ZZ;H a;xt has a zero at
x = 0 of multiplicity m. Thenform <r <m+s,1 <s<r<n—m-+1,
1, (p, xp,..., x*'p : X) has degree (n — r — m + 1) and the coefficient of

I\n—r—m—i—l is:

(— l)n(7"+1)+(s+1) (m+1)a;1—m

HN,n—m+2(Q) HN,n~m+1(q) e HN.n—'Zm+)~S+3(Q’)
% HN,nian:s(q) HN.nf:-m—PZ(q) o HN, n—2m:+r's+l(q) 2.1 6)
HN, n—r+8s+1 HN ,n—'r+s(q) B HN,'n-—m +2(q)

where N=n—s+r—m-+1 and g(x) = (x + )" p(x + 1).

For s<r<m, r<¥n+1), and r <n—m -+ 1, the degree of
11, (p, Py, x*p : A) is (n — 2r 4 1) and the coeflicient is (2.16) with m
replaced by r.

Proof. The result follows from Lemmas 2.5, 2.9, and 2.6. J
By a similar method, we have the following.

Lemma 2.11.  Suppose the polynomial p of degree (n — s + 1) has a zero
atx = —1ofmultiplicity |. Thenfor! <r <Il+s,1 <s<r<n—1-+1,
I, (p, xpyeey X*72p 2 A) has a zero at A = 0 of multiplicity (s [ — r) and
the coefficient of AT is

(_ ])(r+l)(s+1) Hn-s+1,l+1(p) Hn—s—l—l.l—(—z(p) o Hn—s+1,r(p)

HN.r—s«H(Q) HN,T—S(Q) HN,Z)'—ZS——I+2(Q)
> HN.r—'Hz(Q) HN,r—s+1(Q) HN,27'—23—H—3(Q) ,
HN,Z(-Q) HN,Z~1(Q) HN,)'—S+1(Q)
where N =n—s+r — 141 and Q(x) = (x — )" p(x — ).

Fors <r < Landr < imn+ D,r<n—1I14+ 1,11, {p, xp,...., x> p : A)
has a root at A = 0 of multiplicity s and the coefficient of A® is (2.17) with /
replaced by r.

LEMMA 2.12.  Suppose the polynomial p(x) = ¥ ;o +1 a;xt, a,_,.4 > 0, has
a zero at x = —1 of multiplicity I and a zero at x = 0 of multiplicity m,
and all other zeros lie in the intersection of the circles |z — z,| < |z |
and |z — Z, | < |Z, |, where

jetn [(s+1)

= 2sin(a/s + 1))

Zp
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Let
x=n—2r+s-F1 G=m+3
=p—r—m-+1 m<r<m-t )
=n-—2r-+1 (s <r<m) (2.18)
and
B=0 r=1+s
=5 +I1—r (<r<i+y3)
= s<r < (2.19)
Thenifa Z B r<n—m+Lr<n—1-+ 1, {p, xp,...x"p: ) =
C A+ C A7 b Co)8, where sgn C, = (—1)7Y2 gnd sgn O =

(— 1)+,

Proof. 1t follows from Lemma 2.7 that if k is a positive integer and
the polynomial by + bz + - + b,,2" (b, > 0) has no roots in the sector
|arg{—z)| < kn/(k + 1), then every minor of the mairix | Mi)f—ﬁ” 5;_

i

is strictly positive unless it contains a zero row or column (w“aere by =
for i << 0 and i > m). The required result then follows from Lemmas 25

2.16, and 2.11L

THEGREM 5. Zet p, n, r, 8, I, m, o, B be as in Lenuna 212, and x = 3,
r<n—wm—+ i, r<a—1I14 1. Then I{, ,\g. XDyooo, X5 LAY Sigs oo — 8
distinct real zeros of sign (—1). For s = i, these zeros interlace with the
zeres of IT, ,(\\ and of IT,_, Ap' : N, and for s > 1 they intericce with the

zeres of i, (xp, 30, x5 1 A) and of 11, ; {5, (3p) s, {007 9Y 1 A}

Preof.  This foliows exactly the same lines as the proof of Theorem 1
applying Lemma 2.12. §

For the rest of this paper we shall assume that p is a polyromial of exm.t
degree {# — 5 4 1} whose zeros lie in the intersection of the circles
Pooland [z — 3, < | Z, |, where

jeimits+)

= 2 sin(m/(s + 1)) + *

and perhaps with zeros of multiplicity »1 at = ahd of multiplicity fat o — &,
Lﬁt # =1{p, xp,., xpt. Then the polvnomial [T (7 : ) =

L7 X
has d distinct zeros, where 4 is given by

Tia

d=n—5—{—m-+1 (nr < 5,1 < §)
=a—2s—m+1 (m < 5,7 >5)

=pn—2s—7+1 {m
=pn—35+1 (in

—
/
Vv
Ly
Nt N

VoV A
CER
//\

Uy

o~
N
i
<
-

A\
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Let the zeros of II(Z:)) be A, Ay ,..., Ag. For each A; (i =1,2,...,d)
let P«x) be the polynomial corresponding to a solution of the system of
equations (2.3) with A = A;, and define §; € &, (%) such that S{x) = Py(x),
¥xe[0, 1), and S{x + 1) = A;Si(x), Vx e R. Since A; are distinct the func-
tions {S;, S;,..., Sq} are linearly independent. Furthermore using the same
argument as in [3] it can be shown that the dimension of .%,(%) is d. More
precisely we have

LEmMMA 2.13. Let p be a polynomial of exact degree (n — s + 1) whose
zeros lie in the intersection of the circles |z — zy| < |zpl and 1z — Z,| <
| Zy |, and perhaps with zeros of multiplicity m at o and of multiplicity | at
o — 1. Then the dimension of S, () is d, where d is given by (2.20).

Now, since the eigensplines {S;, Ss,..., Sq} are linearly independent, it
follows from Lemma 2.13 that they form a basis for S,%(#). Thus we have
LemMA 2.14. Every S € S,4P) has a unique representation of the form
d

S(x) = Y, ¢:S«x).

=1

3. PrROOF OF THEOREM 1

The proof follows the same pattern as [2] and we shall give only a sketch.
Since « is not a zero of I1,(p, xp,..., x*~1p : (—1)%), none of the eigenvalues
A1 5 Ag 5oy A lie on the unit circle. Suppose

PA ] <1 for i=1,2,.,k,

3.1
Al >1 for i=k+4+ 1,k +2,...,d,
where 0 <k <d Forp =0,1,..,5s — 1, let
P(x) o<x<
k
z ¢:Si(x) x=1
L(x) =1 3.2y

[

Y S (x <0),
| i=k+1
where

Pix) = E;'—Oi)i + ax — @) + aon(x — ¥+ 4 a(x — o)n
P (3.3)
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Let Pi(x) = Zi-;l ¢;S{x) for xe[l,2) and P_{x) = ZLH &,5{xy for
x € [—1, 0}. Suppose the zeros of p(x) are xy, X5 ,..; Xp ey - Lhen in order
that L, € %,(#) we must have

P(1 4 x;) = Py(1 + x), (3.4
P(x;) = P_(xp), Vi=1,2,.,0n—3s-+ 1 3.5

where we adopt the convention that the polynomials are replaced by their
derivatives if x; is a multiple zero of p, and if o and (—1 + «) are zeros

of p of multiplicity m and /, respectively, the corresponding equations in
(3.4) and (3.5) are

PP+ o) = PPz, Vk=0,1,.,mrs—1, k=op,

(3.6)
PO + &) = POx) — 1,

and

P11+ =PPx), Vk=01,..1rs—1, k+p,

(3.7
PO(—1 4 5) = PP(w) — 1.
Then (3.4) and (3.5), with the corresponding equations replaced by (3.6)

and (3.7) if p has zeros at « and (—1 - «), give a nonhomogenous system

of d + (n — 5 - 1) equations in d + (n — s + 1) unknowns ¢;, 5 ,..., ¢4,

Gy, Qoiq 5.er 4 . The corresponding homogenous system is obtained by

replacing the polynomial P in (3.3) by one without the term (x — «)?/p!.

If the system is singular it would mean that there exists a nonzero function

S e F(#) which is bounded. This is impossible by Lemma 2.14. Hence

the system is nonsingular, so that the function L, is uniquely defined.
The spline function L, (p = 0, 1,..., s — 1) has the following properties:

L¥) =0, ¥y = 41, 42, £3,... and Vk =0, 1,.,5— 1. (3.8)
LIy =8, VYk=0,1,.,5—1, (3.9)

and L, (x) — 0 exponentially as | x | — oo.
Now define

S(x) = i yoLo(x — v) - i )’v")Ll(x —v) 4 -

pe=—ao ve=—oo

Y YL (x — ). (3.10)

pe=—0C

Then S € %(%) and satisfies (1.5) and (1.6) of Theorem 1.
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If S; € &(P) also satisfies (1.5) and (1.6) then S — S; € £2(¥) and is of
power growth as | x | — oo. By Lemma 2.14, then, we must have § = S5, . J
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