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1. INTRODUCTION

In [6, 7], Schoenberg developed an elegant theory of cardinal interpolation
by cardinal splines which was later extended to cardinal Hermite interpolation
by Lipow and Schoenberg [3J and by Lee et al. [2]. More recently Tzimbalario
[9] and Mohapatra and Sharma [4J have derived analogous results for certain
classes of cardinal discrete splines. In this paper we derive results for a
broad class of generalized cardinal splines which both unify and generalize
the results of all the above papers. In particular we extend the results of
[9J to cardinal Hermite interpolation.

Let p .. denote the space of all real-valued polynomials of degree not
exceeding n, and for 1 ~ s ~ n, let T = (Yo, 'Yl ,..., Yn-s) denote a set of
linearly independent linear functionals on p ... We define Yn(T) to be the
class of all functions S from IR. to itself such that for v = 0, ±l, ±2,... , S I
[v, v + 1) = Sv E p .. and y[SV_I(X + v)J = y[SvCx + v)], Vy E r.

If Yi(P) = pUleO), i = 0,... , n - s, then .9..(F) is the class of cardinal
splines with integer nodes of multiplicity s studied in [2, 3]. If Yi(P) = p(il(O),
i = 0,... , n - s - 1, and Yn-sCP) = pln-S+1l(O), then Yn(r) consists of the
cardinal g-splines studied by Lee and Sharma [1]. The cardinal discrete
splines of [4, 9] are obtained by putting s = 1, y,(p) = pCih) and
ri(p) = p(i)(ih), i = 0, 1, ... , n - 1 (0 < h < lin).

We note that our above definition of Yn(T) is the analogy for cardinal po­
lynomial splines of Schumakers' classes of generalized splines as defined in [8].

Now if .cJjJ = {PI' P2 ,... ,Ps} is a basis for {p E P n: yep) = 0, Vy En,
then it is easily seen that Y ..(r) comprises all functions S of the form

S 3

Sex) = P(x) + I c~k)pix - 1)+ + L cr")P7:(x - 2)+
k~1 k~l

s s

+ ... + I C~")Pk(X)_ + L C~~Pk(X + 1)- + (Ll)
k~1 k~1
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where PEP., and
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p(x)+ = p(x) if x)oo

=0 if x<o

p(x)_ = ° if x)oo

= p(x) if x < 0.

(1.2)

(1.3)

We shall alternatively write Y'.,(T) as .9';,(g'J).
Then g'J = {x n- sr\ X"-8+2, ... , x"} gives the cardinal splines of [2, 3]

and (JjJ = {X"-8, X"--8+2, X"-8+3, ... , x n } gives the cardinal g-splines of [1],
while for the cardinal discrete splines of [9, 4] f!} comprises the single
polynomial x 1n ) = x(x - h)(x - 217) ... (x - (n - I)h) and Gn(x) =
x(x - nh)n-r, respectively.

Our main result involves the class of polynomials .9 = {p, xp,... , x 8
-

1p},
where p is a polynomial of exact degree n - s + 1 whose zeros lie in the
intersection of the circles I z - Zo I < I Zo I and I Z - 20 I < 120 I, where

iei 'lf!18+1)

Zo = 2 sin(7T/(s + I) + Ct,

and perhaps with zeros of multiplicity 111 at ex and of multiplicity I at ex - 1,
where ex is a number in [0, 1). Suppose ex is not a zero of the polynomial
lln(P, xp, .. , xs-1p: (-1)8) in x defined in (2.4): Then our main result is

THEOREM 1. Given s bi-il~finite sequences of data yIP) = (y~p» (p =

0, 1,... , s - 1) satisfying

(p = 0, 1, ... , s - 1) (1.4)

for some y > 0, there exists a unique spline function S E Y'n(g'J) satisfying

such that

(p = 0, I, ... , S - 1) 'if integer v,

Sex) = 0(1 X I'').

(1.5)

(1.6)

Our approach in solving the above interpolation problem is the same
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as in [2, 3]. In Section 2 we study the eigensplines and the zeros of the
polynomials IIn .,(& : A) as a polynomial in A, while a sketch of the proof
for Theorem 1 is given in Section 3.

2. EIGENSPLINES

Let 0 ~ :x < 1 and set

5°n~(g» = :/',,"(Pl , P2 ,... , pJ = {S E ·.9"n(gli): S(p)«v + ex)+) = 0

Vp = 0, 1, ... , s - 1 and V integers ~-}. (2.1)

A function S E Y7n~(g», S cI= 0, is called an eigenspline if it satisfies the
functional relation

Sex + 1) = AS(X), "Ix E ~ and for some ,\ ~ o. (2.2)

The number ,\ is called the eigenvalue of S.
Next we set out to determine the eigensplines in .9;,~U:P). Let S be an

eigenspline in YOn~(q;) with eigenvalue A, and let P be the polynomial com­
ponent of S in the interval [0, I). Then P(p)(ex) = 0 for p = 0, 1, ... , S - 1,
and we can write

From the relation Sex + 1) = '\S(x), Vx E ~, and (1.1) we have

s

P(x + 1) - AP(X) = I c~l:)pix).
I;~l

Hence

p(p\-x + 1) - AP(P)(ex) = ±c?)p~)(cx),
k~l

Vp = 0, 1,... , n. (2.3)

Let p,lx) = akO + a"'l(x - ex) + a"2(x - ex)2 + ... + a",,(x - ex)", and writing
(2.3) in increasing p from °to n, we have a system of (n .-l- 1) equations
in (n + 1) unknowns as , asH ,... , an , c~l), Cfl,... , ciS).

The matrix of the system is
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(:) 2! (~) (s -- I)! ( S )
S -- 1

1 et 1) 2! Ci 1) (s -- I)! (~ ~ 1)

1 (s t 1) 2! (i 1)

1 (n ~ 1) 2! (n ;- 1) (s -- I)! G=D

G) 2! G) (s -- I)! C~ 1)

°10 I! au 2! 0 12 (s -- I)! a1s- 1

as- 10 I! 08-11 2! 0S-12 (s -- I)! as- 1s- 1

Cso I! as! 21 a s2 (s -- I)! 08S-1

s! (1 -- i\) 0 0

s! (S~ 1) (s + I)! (1 -- A)

s! (11 ~ 1) (n--l)!(1--i\) 0

s! C) (n -- I)! (n ~ 1) 11! (1 -- A)

s! a 1s (n -- I)! aln - l n! a in

s! as-IS (n -- I)! a s - 1n- 1 11! as-In

s! ass (n -- 1)1 0sn-l 11! as"

Therefore, in order that P be nontrivial, the determinant
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a10 all an
a20 a21 a22

a"-10 as- 11 as- 12
a"o asl aS2

C~I) (1-A) 0 0
I

(S+I) (s~l) (1-A) 0 I
5-1 ,I

II
:1

(11-1 ) (n~l) (1-A) 0
II

,s-1
Ii' 11 ) C) (, n 1)(s-L (1-,\) II

al$- 1 a1s a1n- l aln I

I
a2s- 1 a2s a2"-1 G2n i

,I
as-Is-I as- 18 as-In-I as-In

II
II
'IaSS- l ass a.r:;n-l as'Yl I.

(2A)

must be zero.
Observe that if heX) = xn-s+k for k = 1, 2, ... , s, then the polynomial

IIn(.'jJ; A) reduces to 11nCrx; A) of [2].
Now for s ~ r ~ n + 1, let 11".1'(:;;; : A) = 11/l. r(p1, .02"'" Ps : A) be the

determinant obtained from 11,,(2P : A) by deleting the first (r - s) rows and
the last (r - s) columns. We shall put 11nAp1' P2 ,.. " .os : A) = ° for
r < sand r > n + 1. Following [3] we let 11n.,(A) denote the determinant
of the matrix obtained by deleting the first r rows and the last r columns
of 11(;) - I\.oijil, i,j = 0, 1, ... , n. We shall also write IIn.,.(:JP) = II"",
(PI, P2 ,... , ps) = 11/l.rC:YJ : 0).

LEMMA 2.1. Let n, r, s be positive integers ~vith n ~ r ~ s ~ 1. Then the
following identities hold:

r11n.r-J-1(P : 1\.) 11n- 1.,.-1(A)

= Il"_l.,.(P' : 1\.) 11",.,{A) - (n - r + 1) 11n.,.(p : A) IIn-l.tCA). (2.5)

I1"Ap1 , P2 ,... , Ps : A) 11".,.-1(P2 , P3 ,... , PS-I : A)

= IInApl , P2 ,... , PS-I : ,\) II",r-l(P2 , P3 , , P., : A)

- IIn".(P2 ,P3 ,... , .os : A) 11n.r- 1(Pl , P2 , , PS-l : A).

tII"""+l(PI ,.02 " .. , Ps : A) 11n-l,r-1(.o~ ,... , P~-I : A)

= II"-I".(p~ ,... , p~ : A) IIn",,(PI ,... , PS-I : A)

(2.6)

- (n - r + s) Iln.r(Pl ,... , Ps : A) 11,,_1,r(p~ ,... , P~-l : A). (2.7)
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Proof The proof of the above identities involves the same method as
that used in [1], employing Karlin's identity. I

LEMMA 2.2. Suppose p(x) = L;~o aixi. Then for 1 ~ r ~ n + 1,

'1") (I' + 1)ll.",.(p) = a"-1'+1 - (1, a,,_r + 2 a"-1'+1 + ...

+ (_1)"-1'+1 ( n ) a .
n-r+1 0

(2.8)

Proof The result is obtained by expanding the determinant representing
ll",r(P) along the last row. I

LEMMA 2.3. For any polynomial p,

( X)" .(1 - x)" P 1 _ = I ll","+1-lp) x'.
x i~O

Proof Let p(x) = L;~o aixi. Then

"(1 - x)" p ( x ) = I aixi(1 - x)n-i
1 - x . i~O

(2.9)

Interchanging the order of summation and applying Lemma 2.2, the result
(2.9) follows. I

LEMMA 2.4. If n + 1 :); I' and an = 0, then

(2.10)

and

Relations (2.10) and (2.11) follow from (2.9) if an = O. I

Now for n + 1 :); r :); s :); 1, let L1 nAPI, P2 ,... , Ps : A) denote the
determinant
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IIn,r(PI :,\) JIn,t'-I(PI:'\)
IIn,r(P2 :,\) IIn.T - I(P2:'\)

LEMMA 2.5. If n + 1 ;?c I' ;?c S ;?c 1, then

II",.r-s+l(PI : ,\)
JIn,I'-S+1(P2 : ,\)

JIn,I'(Pl , P2 ,... , Ps : ,\) JIn.r-ICA) JIn.,._2(A) ... IIn,r--HI(/\)

= L1 n,,.(PI , P2 ,... , Ps : ,\). (2.12)

Proof Our proof is by induction on s. Clearly the identity (2.12) is
true for s = 1, and for all n ;?c r. Suppose that it is true for s = k, By
Sylvester's identity we have

L1",,,.(PI ,P2 ,,,,,PHI: ,\) Ll".r-I(P2 ,p,) ,,,,,Pi. : ,\)

= Ll",r-I(P2,P3, ,Pk+l: i\)Ll n,,(PI,P2'''''P,: i\)

- Ll n,r(P2 ,P3 , , Pk+l : i\) Ll n,l'-lPI , p~ ,..., Pic : ;\). (2.13)

Hence from (2.6), (2.13), and the induction hypothesis, the assertion IS

true for s = k -'- I, and by induction it is true for all r ;?c s ;?c 1. I

LEMMA 2.6. IfP is a polynomial of exact degree (11 - s -'- 1), then

I
ITn-"+I.t-S+.I(P) JIn-s+l.r-,,(p)

_ nn-s+l,r-S~2(P) nn-s~l,,.-s+lp)
- .

IIT,>-s+l.:'(p) JIn- s+1.I'-1(P)

fIn-SLl,,.-2s+2(P)
fIn-.I,l. "-2 ,+3(.0) (2.14)

Proof The assertion follows from (2.12), using (2.11) and (2.10). I
Next we require a lemma on k-positive sequences.

LEMMA 2.7. Let k be a positive integer and suppose the polynomial
ao + a1:: + ... + a",znl (a,,, > 0) has no roots in the sector I arg:: i <
hr!(k + 1). Let ai = 0 for i < 0 and i > m. Then every minor of order ~k
of the matrix II aj_i II is strictiy positive unless it contains a zero row or column.
lv/oreover the constant hrl(k + 1) is the best possible.

Proof The result follows almost immediately from the \\lork of
Schoenberg [5]. The result is clearly true for m = 1. That it is true for
m = 2 when the polynomial has complex roots follows from Theorem 3
in [5]. It then follows that the assertion is true for all m, since the class
of all k- positive sequences is closed with respect to the operation of con-
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volution of sequences. That the constant hrl(k + 1) is the best possible
follows by putting m = 2 in Theorem 1 of [5]. I

By a suitable translation we may assume without loss of generality that
ex = O.

LEMMA 2.8. IfP has exact degree (n - s + 1), p(o) > 0, and all roots lie
in the intersection of the circles I z - Zo I < 1Zo I and 1z - Zo I < I ZO I,
where

ieirr /(s+1)
Zo = -2-sl~'n~(7T~j-(s-+-1-»'

then

lIn.,.(P, xp, ..., xs-1p : A) = bAn- 2r+s+1 + ... + a,

where a > °and sign b = (_l)(·r+1)("+S+1).

Proof By Lemmas 2.3, 2.6, and 2.7, it follows that lIn,r(P, xp, ... ,
xS-1p) > 0, VI' = s, s + 1,... , n + 1. Since

JI (p xp XS-lp . \) - (_l)(n+s+l)(r+l)JI (p p xS-1p) \n-2r+s+ln,'l' , , ... , w • 1\ - n,n-'r+s+l ,x ,... ," /\

+ ... + JIn,rCP, xp, ... , x s- 1p),

the result follows. I

TFfEOREM 2. Let n, r, s bepositive integers such that s :;( r :;( ten + s + 1),
and suppose that p has exact degree (n - s + 1) and all its roots lie in the
intersection of the circles 1z - Zo I < 1Zo I and I Z - Zo 1 < 1ZO I, where

ieirr/(S-Ul

Zo = 2 sin(7Tj(s + 1» .

Then for s = 1, JIn,r(P : A) has (n - 21' + 2) distinct real zeros of sign
(-1)' interlacing with the zeros of IIn.,.(A.) and of lln-l.ip' : A.), and for
s > 1, IIn,r(P, xp, ... , XS-1p : A.) has (n - 21' + s + 1) distinct real zeros oj
sign (-1)' interlacing with the zeros of lIn".(xp, x2p, ... , xS-lp : A) and oj
IIn-l,r(P', (xp)', ... , (X"-lp)' : A).

Proof If n is even and r = t(n + 2), then lIn,rCP; A) is a positive
constant. If n is odd and r = ten + 1), then lIn.,.(P : A.) = bA + a, where
a > 0 and sign b = (-1)<r+\ so that the zero of IIn,,(P : A.) is of sign (-1)'.
Now take k < ten + 1) and suppose lIn,rCp : A.) has distinct real zeros of
sign (_1)r for r ? k + 1. We shall show that IIn,/';(P: A.) has distinct
real zeros of sign (-1)". Evaluating (2.5) at the zeros of II.n,,,(A) and using
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the fact that IIn,,,(A) and IIn-l,kC),) have interlacing zeros of sign (-1)1',
it follows that IIn,k(p : ,\) has distinct real zeros of sign (--IY interlacing
with the zeros of IIn,,,(),). Then evaluating (2.5) at the zeros of IIn,k(p : A),
we see that IIn-l,k(p' : ,\) has distinct real zeros of sign (-1)1' which interlace
with the zeros of IIn,,,(p : '\). Hence the result for s = 1 is proved by down­
ward induction on r.

Next, take p > 1 and suppose the assertion is true for s ~ p - 1. We
want to show that it is true for s = p. If (n + p) is odd, the result is true
for r = ~(n + p + 1). If (n + s) is even, the result is true for r = ten -:- s),

Now take k < ten + p), and suppose IIn,rCp, xp, ... , xp-1p : A) has distinct
reai zeros of sign (-1Yfor r ~ k + 1. From (2.7),

kIIn.1<+l(p, xp, ... , xp-1p : A) IIn-l,IH«XP)', (x2p)', , (xp-1p)' : ,\)

= IIn -1,l.'(,r/, (xp)', ... , (xp-1p)' : '\)IIn,,,(xp, x 2p, , x p
-

1p: A)

- (n - r -1- p) IIn.lJp, xp, ... , x p- 1p : ,\) IIn_l,"«xp)', (x2p)', ... , (xo- 1p)' : A')'

Evaluating this at the zeros of IIn,,,(xp, x 2p, , x o- 1p : t\) and using the
induction hypothesis we see that IIn,,,(p, xp, , x p- 1p : A) has real distinct
zeros of sign (-1Y which interlace with the zeros ofIInjxp, x 2p.... , xp-1p : A).
Then evaluating the same relation at the zeros of JIn,llp, xp, ... , xp-1p : II.), we
see that JI,,_l,"(p', (xp)', ... , (xp-1p)' : ,\) has distinct real zeros of sign (-1)"
which interlace with the zeros of IIn,r(P, xp, ... , x o- 1p : A).

The result follows by induction. I
We next consider the possibility that the polynomial ,0 has zeros at :x

or.:\: - !. We again assume ex = O.

LEMMA 2.9. If the polynomial p(x) = L;~o aixi has a zero at x = 0 of
multiplicity m, thenfor 1 ~ r ~ m, I' ~ ten + 1), r ~ 11 - m -:- 1, IIn,,'(p : A)
has degree (II - 21' + 1) and the coefficient 0/'\11-2r+1 is (_l)n(r+1J IIn,n-r-ci p),
where p(x) = p(x + 1).

Proof By (2.9).

" _. _( x ) ( 1 .
i~O IIn.n-1-i(P) x' = (l - x}n P 1 _ x = (1 - x)n p \ 1 - x),

So
n-i 'n - i'

IIn,n+l-i(P) = (-1)i L Gj ( •.. ).
j~O . I

By expanding IIn,r(P : ,\), we see that IInAp : ,\) has degree (n - 21' --'-- 1)
and the coefficient of ,\71-2.-+1 is 'L;::::+l a;(~-=n. Since ao = ... = ar - 1 = 0,
the result follows. I
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LEMMA 2.10. Suppose the polynomial p(x) = L;:;+1 aixi has a zero at
x = 0 ofmultiplicity 111. Thenfor m :'( r < m + s, 1 :'( s :'( r :'( n - 111 + 1,
IIn,r(P, xp, ... , x s- 1p : It) has degree (n - r -- m + 1) and the coefficient of
Itn- r- m+1 is:

IIN. n-2mH-Hlq)
IIN.n-2mH-s+!(q) (2.16)

where N = n - s + r - In + 1 and q(x) = (x + 1y-m p(x + 1).
For s:'( r :'( 111, r:'( ten + 1), and r:'( n - 111 + 1, the degree of

IIn,r(P, xp, ... , x s- 1p : It) is (n - 2r + 1) and the coefficient is (2.16) with m
replaced by r.

Proof The result follows from Lemmas 2.5, 2.9, and 2.6. I
By a similar method, we have the following.

LEMMA 2.11. Suppose the polynomial p of degree (n - s + 1) has a zero
at x = -1 ofmultiplicity I. Thenfor I :'( r < 1+ s, 1 :'( s :'( r :(; n - 1+ 1,
II" ..,.(p, xp, ... , XS- 1p : It) has a zero at It = 0 of multiplicity (s + 1- r) and
the coefficient of ItS+1- 1' is

IIN.1'-s+l(Q) IIN,r-sCQ) IIN.2"-2S-I+2(Q)

X
IIN.1'-s+2(Q) IIN.r-s+1(Q) IIN,2"-2S-1+3(Q)

IIN,I(Q) IIN.l-1(Q) IIN "'-s+I(Q)

where N = n - s + r - I + 1 and Q(x) = (x - 1)1'-1 p(x - 1).

For s :'( r :(; I, and r :(; ten + 1), r :(; n - 1+ 1, IIn".(p, xp, ... , XS- 1p : It)
has a root at It = 0 of multiplicity s and the coefficient of Its is (2.17) with I
replaced by r.

LEMMA 2.12. Suppose the polynomial p(x) = 2:;,:;+1 GiXi, an-HI> 0, has
a zero at x = -1 of multiplicity I and a zero at x = 0 of multiplicity 111,

and all other zeros lie in the intersection of the circles I z - .3"0 1 < I Zo I
and 1z - 20 I < 120 I, where

Zo = 2 sinClT/(s + 1) .
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and

ex = n - 2r -+- s + 1

=n-r-m+l

=, n - 21' + 1

fJ = 0

=s+/-r

(I' ? In + s)

(m :'(; r < 111 + s)

(s :'(; r < m)

(I' ? 1+ s)

(l :'(; I' :'(; ITS)

(s :'(; r :'(; I).

(2.18)

(2.19)

Then if'" ? (3, r :'(; n - m -+- 1, I' :'(; 11 - 1 -;- 1, Il".;-(p, )':P, ... , X'-lp : it) =

C~A~ +- C~_I,\'-i + .,. + C{3;"fJ, where sgn C" =, (_l)(T--l)~ and sgn O~ =
(-l)()'+1ifi.

Proof It follows from Lemma 2.7 that if k is a positive integer and
the polynomial bo + bIz + .. ,+ b,nz1l1 (bm > 0) has no roots in the sector
i arg(-z)[ < k7T!(k + 1), then every minor of the matrix 1!(-l)1-;-;" hi-.I
is strictly positive unless it contains a zero rO\v or column (where bi = 0
for i < 0 fend i > m). The required result then follows from Lemmas 2.3.
2.1O,and2.~L I

THEOREM 3. Let p, n, r, s, I, in, c.:, fJ be as in Lemma 2.12, and :x ? ;3,
r :'(; !1 - 111 + t, r :'(; n - 1+ L Then IIn.r(p, xp, ... , xs-1p ; ,\) has G- - ,8
distillet real zeros of sign (-1)". For s = 1, these ::eros interlace H'ith the
zeros of IIn ,,.(,\) and of JIn-l.1.(P' : 1\), and for s > 1 they interlaa with the
zeros of Tf".r(xp, x 2p, ... , XS-Ip : A) and of II"-L/p', (xp)', ... , (y'-lp )' : 1\)

Proof This foHows exactly the same lines as the proof of Theorecl I,
applyir.g Lemma 2.12. I

For the rest of this paper we shall assume that p is a polynomial of exact
degree (n - S + 1) whose zeros lie in the intersection ofthe circles I z - ::0 : <
I ::c I ar;d 1:: - 70 ! < 120 I, where

iei" /(8+1) .

=0 = 2 sin(r.j(s + 1)) + C',

and perhaps with zeros of multiplicity In at c,: and of mutiplicity I al C\ ­

Let !J! = {p, -'p, ... , X'-lp }. Then the polynomial II,lJ15: ,\) ""00 TIn ./9) ; ,\)
has d distinct zeros, where d is given by

d=n-s-l-m+ 1

=n-2s-m+ 1

= II - 2s - i + 1

= 11 - 3s + 1

(nl ~ s, l :~; s)

(m :'(; s, ! > s)

(m > s, [ < s)

(m > s, l :> s). (2.20)
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Let the zeros of JIig; : A) be AI' A2 , ••• , Ad' For each Ai (i = 1,2,... , d)
let Pi(x) be the polynomial corresponding to a solution of the system of
equations (2.3) with A = Ai , and define Si E 9'n",(&) such that Si(X) = P;(x) ,
'<Ix E [0, 1), and S;(x + 1) = AiS;(x), '<Ix E lR. Since Ai are distinct the func­
tions {SI , S2 ,..., Sd} are linearly independent. Furthermore using the same
argument as in [3] it can be shown that the dimension of 9'n"'(:YJ) is d. More
precisely we have

LEMMA 2.13. Let p be a polynomial of exact degree (n - s + 1) whose
zeros lie in the intersection of the circles I z - zo 1 < 1 Zo I and I z - 20 I <
120 I, and perhaps with zeros of multiplicity m at ex and of multiplicity I at
ex - 1. Then the dimension ofSn",(&) is d, where d is given by (2.20).

Now, since the eigensplines {SI, S2 ,..., Sd} are linearly independent, it
follows from Lemma 2.13 that they form a basis for Sn"'(tJj1). Thus we have

LEMMA 2.14. Every S E 9'n",(g;) has a unique representation of the form

d

S(x) = L CiSi(X).
i~1

3. PROOF OF THEOREM 1

The proof follows the same pattern as [2] and we shall give only a sketch.
Since ex is not a zero of JIn(p, xp, ... , XS-1p : (-l)s), none of the eigenvalues
Al , A2 , ... , Ad lie on the unit circle. Suppose

I Ai 1< 1

I Ai I> I

for i = 1,2,... , k,

for i = k + 1, k + 2,... , d,
(3.1)

where °~ k ~ d. For p = 0, 1,... , s - 1, let

where

P(x)
k

L CiSi(X)
i~1

d

L CiSi(X)
i~k+l

(0 ~ x < 1)

(x ;?; 1)

(x < 0),

(3.2)
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k d.
Let PI(x) = Li=l C;Si(X) for x E [1, 2) and P-lx) = Li=k+l C,Si(X) tor
x E [-1,0), Suppose the zeros of p(x) are Xl' X2 " .. , Xn-s+l . Then in order
that L p E ~,(go) we must have

P(l + xJ = Pl(1 + x;),

P(x;) = P-leX;), Vi = 1,2,... ,11 - S -1- 1,

(3.4)

(3.5)

(3.6)

(3.7)

where we adopt the convention that the polynomials are replaced by their
derivatives if x; is a multiple zero of p, and if ex and (-1 + a) are zeros
of p of multiplicity m and I, respectively, the corresponding equations in
(3.4) and (3.5) are

p{k)O + a) = P~~(x), Vk = 0, 1,... , mAS - 1, k '1'= p,

p{p)(l + ex) == p~i(IX) - 1,

and

p U'"\_1 + ex) = p~k>C.x), Vk = 0,1,... , I!'. 5 - 1, k ¥= p,

P(p)(-l + ex) = P~P)(IX) - 1.

Then (3.4) and (3.5), with the corresponding equations replaced by (3.6)
and (3.7) if p has zeros at ex and (-1 + IX), give a nonhomogenous system
of d + (n - s + 1) equations in d + (n - s + 1) unknowns Cl , C2 , ..• , Cd,

as, as+l , ... , an' The corresponding homogenous system is obtained by
replacing the polynomial P in (3.3) by one without the term (x - crY/pI.
If the system is singular it would mean that there exists a nonzero function
S E 9'n"'(,gI') which is bounded. This is impossible by Lemma 2.14. Hence
the system is nonsingular, so that the function L p is uniquely defined.

The spline function L p (p = 0, I, ... , s - 1) has the following properties:

L~h')(V) = 0,

L(k)(O) = 8() _ kp,

Vv = ±l, ±2, ±3,... and \:Ik = 0, 1, ... , s - 1. (3.8)

Vk = 0, I, ... , s - 1, (3.9)

and LoCx) ~°exponentially as I x I~ 00.

Now define

OJ oc

Sex) = L )'"Lo(x - v) + L y;,,) LI(x - v) + '"
~'=-oo

aJ

-:- L y~S-l)Ls-ix - v).

Then S E 9;,(go) and satisfies (1.5) and (1.6) of Theorem 1.

(3.10)
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If 81 EO 9;.,(2P) also satisfies (1.5) and (1.6) then 8 - 81 EO ~,o(gJ) and is of
power growth as I x I --+ 00. By Lemma 2.14, then, we must have 8 = 81 , I
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